MicroRNA-95 Promotes Cell Proliferation and Targets Sorting Nexin 1 in Human Colorectal Carcinoma

Zhaohui Huang, Shenglin Huang, Qifeng Wang, et al.

Updated Version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-3032

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/03/18/0008-5472.CAN-10-3032.DC1.html

Cited Articles
This article cites 40 articles, 18 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/7/2582.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
MicroRNA-95 Promotes Cell Proliferation and Targets Sorting Nexin 1 in Human Colorectal Carcinoma

Zhaohui Huang1,2,3,4, Shenglin Huang5, Qifeng Wang1,2,3, Linhui Liang5, Shujuan Ni1,2,3, Lisha Wang1,2,3, Weiqi Sheng1,2,3, Xianghuo He5, and Xiang Du1,2,3

Abstract

MicroRNAs (miRNAs) are strongly implicated in cancer but their specific roles and functions in the major cancers have yet to be fully elucidated. In this study, we defined the oncogenic significance and function of miR-95, which we found to be elevated in colorectal cancer (CRC) tissues by microarray analysis. Evaluation of an expanded CRC cohort revealed that miR-95 expression was up-regulated in nearly half of the tumors examined (42/87) compared with the corresponding noncancerous tissues. Ectopic overexpression of miR-95 in human CRC cell lines promoted cell growth in vitro and tumorigenicity in vivo, whereas RNAi-mediated silencing of miR-95 decreased cell growth ratio. Mechanistic studies revealed that miR-95 repressed the expression of reporter gene coupled to the 3'-untranslated region of sorting nexin 1 (SNX1), whereas miR-95 silencing up-regulated SNX1 expression. Moreover, miR-95 expression levels correlated inversely with SNX1 protein levels in human CRC tissues. RNAi-mediated knockdown of SNX1 phenocopied the proliferation-promoting effect of miR-95, whereas overexpression of SNX1 blocked miR-95-induced proliferation of CRC cells. Taken together, these results demonstrated that miR-95 increases proliferation by directly targeting SNX1, defining miR-95 as a new oncogenic miRNA in CRC. Cancer Res; 71(7); 2582–9. ©2011 AACR.

Introduction

MicroRNAs (miRNAs) are a class of approximately 22 nucleotide noncoding RNA molecules that negatively regulate the expression of a wide variety of genes mainly through direct interaction with the 3'-untranslated regions (3'UTR) of their corresponding mRNA targets (1). It has been estimated that miRNAs regulate up to one third of the total human genes at the posttranscriptional level (2), indicating that miRNAs have pivotal roles in physiological and pathological processes. Increasing evidence shows that the deregulation of miRNAs is involved in a wide range of diseases, including human cancers. These data highlight the important roles of miRNAs in tumor development and provide new insights into the molecular mechanisms underlying carcinogenesis (3, 4). The number of verified miRNAs is increasing rapidly, and the latest version of miRBase (release 16.0, September 2010, http://www.mirbase.org/) has annotated over 1,000 miRNA sequences in the human genome. However, the roles of most of these miRNAs in the physiological and pathological processes remain to be elucidated.

Colorectal carcinoma (CRC) is the third most common cancer worldwide. Despite achievements in the treatment in the few past decades, CRC remains a major public health concern. The molecular pathogenesis of CRC is complicated and poorly understood. Although previous studies found that many protein-coding genes, including p53, APC, K-ras, and DCC, are involved in the development and progression of CRC, the roles and potential mechanisms of miRNAs in CRC are still largely unknown. Only few miRNAs, such as let-7 (5), miR-21 (6–8), miR-143 (9, 10), miR-145 (11), miR-135 (12), and 196a (13), have been studied for their roles in colorectal carcinogenesis.

In this study, we investigated the miRNA expression profiles in CRC and identified a new proliferation-promoting miRNA, miR-95, which is frequently up-regulated in CRC. Moreover, we identified sorting nexin 1 (SNX1), a putative tumor suppressor in CRC (14), as the direct functional target of miR-95.

Materials and Methods

Human tissues and cell lines

A total of 146 pairs of human primary CRC and adjacent noncancerous tissues (NCT) were collected between 2004 and
2007 at Fudan University Shanghai Cancer Center. Tissue samples were immediately snap-frozen in liquid nitrogen. Both tumor and adjacent NCTs were histologically examined. All human materials were obtained with informed consent, and this project was approved by the Clinical Research Ethics Committee of Fudan University Shanghai Cancer Center. Clinical information of these patients is listed in Supplementary Table S1.

Five human CRC cell lines, including HCT-116, HCT-8, LoVo, SW-480, and Colo-205, were purchased from American Type Culture Collection (ATCC). HCT-8 and Colo-205 were maintained in RPMI 1640, HCT-116 in McCoy's 5a, LoVo in F12-K, and SW-480 in Leibovitz's L-15 medium. Media were supplemented with 10% fetal bovine serum. The cells were incubated under the conditions recommended by ATCC.

Microarray analysis
Total RNA was extracted from 10 tumor tissues and paired NCTs using TRIzol reagent (Invitrogen). RNA concentration was assessed with a NanoDrop spectrophotometer (NanoDrop Technologies) and RNA integrity was verified using an Agilent 2100 bioanalyzer (Agilent). MiRNA microarray profiling was performed as previously described (15). Data analysis was performed by using GeneSpring GX software (Agilent). A miRNA was designated as overexpressed if expression in tumor tissues was >2.0-fold that in normal colorectal epithelial tissues.

RNA extraction and quantitative real-time RT-PCR
Total RNA was extracted using TRIzol reagent. cDNA was synthesized with the PrimeScript RT reagent Kit (TaKaRa). Quantitative RT-PCR (qRT-PCR) analyses were carried out to detect miRNA expression using SYBR Premix Ex Taq (TaKaRa), and β-actin was used as an internal control. TaqMan microRNA assays (Applied Biosystems) were used to quantify the expression levels of mature miR-95 according to the provided protocol, and U6 small nuclear RNA was used as an internal control.

Vector constructs
The human pri-miR-95 sequence was amplified from normal human genomic DNA and cloned into pMD-18T vector (Takara) and then subcloned (BamH I and EcoR I) into the lentivirus expression vector pWPXL (a generous gift from Dr. T. Didier) to generate pWPXL-miR-95.

The 3'UTR of potential target genes of miR-95 were amplified and cloned into the region downstream of a CMV promoter-driven firefly luciferase cassette in a pcDNA3.0 vector (p-Luc). The mutant 3'UTR of SNX1, which carried the mutated sequence in the complementary site for the seed region of miR-95, was generated based on the p-Luc-SNX1 3'UTR-WT plasmid by overlap-extension PCR. The open reading frame (ORF) of SNX1 was amplified and cloned into pWPXL vector (a generous gift from Professor Didier TRONO). The primers used are displayed in Supplementary Table S2.

Lentivirus production and transduction
Virus particles were harvested 48 hours after pWPXL-miR-95 (or pWPXL-SNX1) cotransfection with the packaging plasmid psPAX2, and VSV-G envelope plasmid, pMD2.G (a generous gift from Professor Didier TRONO), into HEK 293T cells using Lipofectamine 2000 reagent (Invitrogen). HCT-116 and LoVo cells, which express lower levels of miR-95 than other CRC cell lines (Supplementary Fig. S1A), were infected with recombinant lentivirus-transducing units plus 6 μg/mL polybrene (Sigma).

Oligonucleotide transfection
MiR-95 mimics was synthesized by Genepharma, Shanghai, China. MiR-95 inhibitor (anti–miR-95, chemically modified antisense oligonucleotides designed to target specifically against mature miR-95), and SNX1 siRNA (target sequence: CCACGTGATCAAGTACCTT) were synthesized Ribobio, Guangzhou, China. Oligonucleotide transfection was performed with Lipofectamine 2000 reagents (Invitrogen). The final concentration of miR-95 mimics or anti–miR-95 in the transfection system was 50 nM.

Cell proliferation assay and colony formation assay
A cell proliferation assay was performed with the Cell Counting Kit-8 (CCK-8; Dojindo) according to the manufacturer's instruction. For the colony formation assay, 1,000 cells were placed in each well of 6-well plate and maintained in media containing 10% FBS for 10 days. Colonies were fixed with methanol and stained with 0.1% crystal violet in 20% methanol for 15 minutes. The number of colonies was counted using an inverted microscope.

Tumor formation assay in a nude mouse model
Athymic BALB/c nude mice were maintained under specific pathogen-free conditions in the Department of Experimental Pathology, Shanghai Cancer Institute. Mice were manipulated and housed according to protocols approved by the Shanghai Medical Experimental Animal Care Commission. Tumor cells stably expressing miR-95 (LoVo or HCT-116) or vector control, were harvested from subconfluent cell culture plates, washed with PBS, and resuspended at a concentration of 2 × 10^7 cells per milliliter of PBS. Of the suspending cells, 0.1 mL was subcutaneously injected into either side of the flank of the same female nude mouse at 5 weeks of age. Tumor growth was examined twice a week. After 6 weeks, these mice were sacrificed and examined for the growth of subcutaneous tumors.

Luciferase assay
HEK 293T cells were cultured in 96-well plates and cotransfected with 200 ng of pWPXL-miR-95 (or pWPXL), 50 ng luciferase reporter, and 10 ng pRL-CMV Renilla luciferase reporter using lipofectamine 2000. After 48 hours of transfection, firefly and Renilla luciferase activities were measured using the dual-luciferase reporter assay system (Promega).

Western blot
Proteins were separated on 10% SDS-PAGE gel and then transferred to nitrocellulose membrane (Bio-Rad). After blocked with 5% nonfat milk, the membrane was incubated with mouse anti-SNX1 McAb (1:400, BD Transduction Laboratories).
Laboratories), mouse anti–β-actin McAb (1:1000, Sigma), or antibodies against (Tyr 1068) phosphorylated EGFR (1:1000, Abcam) or total EGFR (1:1000, Cell Signaling). The proteins were visualized using ECL reagents (Pierce).

Immunohistochemical staining

Tissue arrays were constructed using 146 pairs of CRC tissues and adjacent NCTs. Immunohistochemical staining was performed on 5-μm sections of paraffin-embedded human CRC tissues and matched NCTs to determine the expression of SNX1. Briefly, the slides were incubated in 1 μg/mL SNX1 antibody (1:250, BD Transduction Laboratories) overnight. Subsequent steps were performed using Universal Daka LSAB+ kit and Peroxidase (LASB+ Kit, HRP) according to the manufacturer's instruction (DAKO). The intensity of the SNX1 staining pattern was quantitated as described (14).

Statistical analysis

The results were presented as mean ± S.E.M. The data were subjected to Student’s t test unless otherwise specified (χ² test). A P value of less than 0.05 was considered statistically significant.

Results

Expression of miR-95 is frequently increased in human CRC tissues

MiRNA expression profiles in 10 paired CRC tissues and NCTs were analyzed using a microarray to screen differentially expressed miRNAs in CRC. Of the 866 human miRNAs analyzed, 49 exhibited significantly differential expression in CRC tissues (Fig. 1A). To find new potential CRC-related miRNAs from these miRNAs, we selected several targets (miR-31, -95, -223, -139–5p, -30a*, and -204) to evaluate their influence on the growth of CRC cell using miRNA mimics transfection assay; and found that miR-95 show the strongest proliferation-promoting effect (data not shown). In addition, upregulation of miR-95 has been observed in multiple types of cancer including CRC (16, 17), lung cancer (18), and pancreatic cancer (19, 20), suggesting that deregulation of miR-95 may play an essential role in tumorigenesis.

To further confirm the upregulation of miR-95 in CRC, the expression level of miR-95 was examined in an expanded CRC cohort consisting of 87 pairs of tumor tissues and corresponding NCTs using qRT-PCR assay. Consistent with the microarray data, miR-95 expression was up-regulated in nearly half of the tumors examined (42/87) when compared with the adjacent NCTs (P < 0.001, Fig. 1B and C). However, no significant association was found between miR-95 expression in CRC and tumor size, location, stage, or differentiation (P > 0.05).

MiR-95 promotes CRC cell proliferation in vitro and in vivo

To determine the impact of miR-95 on CRC cell proliferation, we established HCT-116 and LoVo transfectants stably expressing miR-95 using lentivirus infection (Supplementary Fig. S1B). The cell proliferation assays and colony formation assays revealed that overexpression of miR-95 can significantly promote CRC cell proliferation (P < 0.05, Fig. 2A and B), whereas RNAi-mediated silencing of miR-95 decreased cell growth ratio (P < 0.05, Fig. 2C). Furthermore, overexpression of miR-95 could significantly promote the tumorigenicity of CRC cells in nude mice (Fig. 2D). Collectively, our data indicated that miR-95 exerts a growth-promoting function in human CRC.
SNX1 is a direct target of miR-95

It is generally accepted that miRNAs exert their function by downregulating the expression of their downstream target genes. Thus, miR-95 may execute its growth-promoting function by inhibiting its targets that normally have tumor suppressive effect. Basing on this rationale, 5 potential genes (COL4A2, EMP1, ONECUT2, SNX1, and UBE4B) were selected using TargetScan 5.1 (21). We cloned the 3’UTRs of these 5 genes into a luciferase reporter vector to evaluate the influence of miR-95 on expression of said reporter gene using a luciferase assay. The results revealed that miR-95 could inhibit the expression of reporter gene in recombinant plasmids of SNX1, UBE4B, and EMP1 3’UTRs, especially SNX1 3’UTR (Fig. 3A).

To test whether SNX1 is a direct target for miR-95, we mutated the predicted binding site of miR-95 on the SNX1 3’UTR (Fig. 3B), and found that the mutant SNX1 3’UTR was completely refractory to miR-95-mediated luciferase reporter repression (Fig. 3C). In concordance with these results, endogenous SNX1 protein levels were also downregulated in miR-95-overexpressed cells and could be restored in miR-95-depleted cells (Fig. 3D). The SNX1 mRNA levels were not decreased in miR-95 stable cell lines when compared with cells transfected with an empty vector (data not shown).

Downregulation of SNX1 inversely correlated with miR-95 expression in CRC

To further evaluate the relationship between miR-95 and SNX1 in human CRC, we detected the expression of SNX1 and miR-95 in 146 paired CRC and NCT tissues using IHC and qRT-PCR, respectively. Of the 146 cases, 114 tumors showed decreased SNX1 expression when compared with paired NCTs (Fig. 4A and B). The expression levels of SNX1 in tumor tissues inversely correlated with the miR-95 levels (Spearman $r = -0.197$, $P = 0.017$; $\chi^2 = 5.678$, $P = 0.017$; Fig. 4C and Table 1), suggesting that the decreased SNX1 expression might result from miR-95 overexpression in human CRC. In addition, decreased immunoreactivity of SNX1 correlated with poor tumor differentiation (Spearman $r = -0.177$, $P = 0.032$). No association was observed between SNX1 staining and tumor size, grade or lymph node metastasis ($P > 0.05$).
MiR-95 promotes tumor proliferation via directly targeting SNX1 in CRC

To examine whether SNX1 might function in miR-95–induced CRC cell proliferation, we inhibited the SNX1 expression with siRNA and revealed that SNX1-depleted cells showed increased proliferation, which phenocopied the proliferation-promoting effect of miR-95 (Fig. 5A). Cotransfection experiments using siSNX1 and anti–miR-95 also showed that miR-95 silencing could not repress proliferation in SNX1-depleted HCT-8 cells (Fig. 5B). Furthermore, we revealed that SNX1 overexpression could significantly abrogate miR-95–induced cell growth (Fig. 5C). In addition, overexpression of miR-95 could increase EGFR phosphorylation and inhibition of miR-95 led to decreased EGFR phosphorylation (Fig. 5D), which phenocopied the modulating function of SNX1 on EGFR signaling (14). Taken together, these results proved that miR-95 promotes CRC cell proliferation via directly targeting SNX1.

Discussion

Knowledge about the precise molecular mechanisms underlying colorectal tumorigenesis is crucial in the development of better therapy strategy for CRC patients. Recent advances have suggested that dysregulation of miRNAs is a common event in human cancers, including CRC (3). In this study, we revealed that a panel of 49 miRNAs was altered in CRC tissues. Of these, 49 differentially expressed miRNAs, miR-135b (12), -145 (11), -183 (22), -182 (23, 24), -96 (24), -195 (25), -204 (26), -221 (27), -224 (28), -1 (29), and miR-17-92 cluster (30–32) have been reported in CRC (11, 12, 32) and other cancers (22–29). These data suggest that these miRNAs may have common roles on tumorigenesis. Based on our preliminary functional tests, we focused on miR-95, which had been reported to be up-regulated in CRC (16, 17), lung cancer (18), and pancreatic cancer (19, 20). However, no information about the function or molecular mechanism of miR-95 in human diseases had been reported. In this study, we found that miR-95 is frequently up-regulated in CRC tissues, and that overexpression of miR-95 can significantly promote CRC cell proliferation both in vitro and in vivo. Moreover, we identified SNX1, a putative tumor suppressor in CRC (14), as a direct functional target of miR-95.

Mammalian SNXs are a group of highly diverse proteins defined by the presence of a phospholipid-binding domain.
termed the phox homology domain (33). Increasing evidence points to a central role of SNXs for vesicle trafficking processes in oncogenesis and tumor suppression, and SNX1, SNX2, SNX10, and SNX16 have been shown to be involved in tumorigenesis (14, 34–37). SNX1 is the mammalian homologue of the yeast vacuole protein-sorting molecule, Vps5p, and is implicated in endosome-to-lysosome sorting of cell surface receptors, including multiple receptor tyrosine kinases (EGFR, PDGFR, the insulin receptor, and the transferrin receptor; ref. 38), G protein-coupled receptors (protease-activated receptor-1; ref. 39), and multiple receptor serine–threonine kinases (TGF-β; ref. 40). Nguyen and colleagues (14) showed that the protein levels of SNX1 were significantly down-regulated in 75% (15/20) of human CRCs. Consistent with these past findings, our results from a large cohort also showed that SNX1 was significantly down-regulated in the majority of human CRCs (78%, 114/146). However, the mechanism of SNX1 underexpression in CRC has not yet been elucidated. This is the first line of evidence to support the hypothesis that underexpression of SNX1 in CRC may result from overexpression of a specific miRNA molecule, miR-95.

Figure 4. Expression of SNX1 is often decreased and inversely correlated with miR-95 expression in human CRC tissues. A, immunohistochemical staining of SNX1 in tumor tissue and corresponding normal colonic epithelium (a, 100×). Normal epithelium shows vesicular brown cytoplasmic SNX1 staining (c, 400×). This staining is nearly entirely absent from the tumor tissue (b, 400×). B, SNX1 expression is frequently decreased in tumor tissues when compared to the matched noncancerous tissues. C, the expression levels of SNX1 in tumor tissues correlated inversely with the miR-95 expression levels (Spearman \(r = -0.197 \), \(P = 0.017 \)).

Table 1. The expression levels of SNX1 in CRC tissues

<table>
<thead>
<tr>
<th>miR-95 levelsa</th>
<th>SNX1 protein expressionb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score 0</td>
<td>Score 1</td>
</tr>
<tr>
<td>Low</td>
<td>21 (28.8%)</td>
<td>28 (38.4%)</td>
</tr>
<tr>
<td>High</td>
<td>35 (47.9%)</td>
<td>20 (27.4%)</td>
</tr>
<tr>
<td>Total</td>
<td>56 (38.4%)</td>
<td>48 (32.9%)</td>
</tr>
</tbody>
</table>

aThe median value of miR-95 levels in 146 CRC tissues is used to divide these cases into 2 groups with low or high miR-95 levels, respectively.

bThe staining intensities are scored and represented as follows: 0, no staining or faint cytoplasmic blush in less than 25% of tumor cells; 1, faint cytoplasmic blush in more than 25% of tumor cells; 2, vesicular pattern no more intense than adjacent normal epithelium; 3, vesicular pattern more intense than adjacent normal epithelium.
indicating a new regulating mechanism for vesicle sorting to drive proliferation of CRC cells.

In summary, we have identified an important proliferation-promoting miRNA, miR-95, which was frequently overexpressed in human CRC. Re-expression of miR-95 promoted CRC cell proliferation through negative regulation of SNX1 expression. Expanding insights into the key of miRNA dysregulation implicated in colorectal tumorigenesis will yield important clues to improve our understanding of the complicated molecular pathogenesis of CRC and may enhance the development of new therapeutic regimens for CRC patients.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Acknowledgment

We thank Didier Trono (School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland) for providing the pWPXL, psPAX2, and pMD2.G plasmids.

Grant Support

This study was partially supported by grants from National Natural Science Foundation of China (Grant Nos. 81000867 and 81071791), Science and Technology Commission of Shanghai Municipality (Grant No. 09JC1403700 and 10XD1401300), and the Starting Merieux Research Grants.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 18, 2010; revised January 19, 2011; accepted January 23, 2011; published OnlineFirst March 22, 2011.

